a2 United States Patent

Bou-Ghannam et al.

US009201714B2

US 9,201,714 B2
*Dec. 1, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

APPLICATION MODULE FOR MANAGING
INTERACTIONS OF DISTRIBUTED
MODALITY COMPONENTS

Inventors: Akram A. Bou-Ghannam, Lake Worth,
FL (US); Gerald M. McCobb, Delray
Beach, FL (US)

Assignee: Nuance Communications, Inc.,
Burlington, MA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 93 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 12/977,671

Filed: Dec. 23, 2010

Prior Publication Data
US 2011/0093868 Al Apr. 21, 2011

Related U.S. Application Data

Continuation of application No. 12/163,052, filed on
Jun. 27, 2008, now Pat. No. 7,882,507, which is a
continuation of application No. 10/741,997, filed on
Dec. 19, 2003, now Pat. No. 7,409,690.

Int. Cl1.

GO6F 3/00 (2006.01)

GO6F 9/44 (2006.01)

GO6F 9/46 (2006.01)

GO6F 9/54 (2006.01)

U.S. CL

CPC GO6F 9/542 (2013.01); GOGF 9/4443

(2013.01); GOGF 2209/544 (2013.01); GO6F
2209/545 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,748,974 A 5/1998 Johnson
5,872,274 A 2/1999 Cannady et al.
5,878,274 A * 3/1999 Konoetal.cccoeoerrnine 710/8
6,104,803 A 8/2000 Weser et al.
6,405,317 Bl 6/2002 Flenley et al.
6,529,863 Bl 3/2003 Ball et al.
6,763,397 B1* 7/2004 Brachaetal. 719/332
6,778,990 B2* 8/2004 Garciaetal. 719/315
6,859,451 Bl 2/2005 Pasternack et al.
6,990,513 B2 1/2006 Belfiore et al.
7,069,560 Bl 6/2006 Cheyer et al.
(Continued)
OTHER PUBLICATIONS

Marazakis et al, The Aurora Architecture for Developing Network-
Centric Applications by Dynamic Composition of Services, Univer-
sity of Crete and Institute of Computer Science, FORTH, pp. 1-51,
1997.*

(Continued)

Primary Examiner — Diem Cao

(74) Attorney, Agent, or Firm — Wolf, Greenfield & Sacks,
P.C.

57 ABSTRACT

A method for managing application modalities using dia-
logue states can include the step of asserting a set of activation
conditions associated with a dialogue state of an application.
Each of the activation conditions can be linked to at least one
programmatic action, wherein different programmatic
actions can be executed by different modality components.
The application conditions can be monitored. An application
event can be detected resulting in an associated application
condition being run. At least one programmatic action linked
to the application condition can be responsively initiated.

19 Claims, 4 Drawing Sheets

400

instentiate an application on a thin
client
405}

Montior the activetion conditions
440}

Connact the application to & modallty
‘manager remolaly located from the
application

410)

Run the activation conditions based
upon an application event
445

Add activation conditions for the
application to & shered memory area
of the modellty manager
418]

Activate at least one modality
componentfor the dialogue stats
420)

Add ativation condtians for the
modality component o the shared
n af the

Inttiate @ programmatic action linkad o)
the firad activatien condition
450)

Change in dialogue state 7
455

[Activate a naw modaity component for
the new dislogue state as necessary

nager
425|

Link each activation condltion in the
shared memory area io at lsast one
programmatic action.

Connect Ihe modslity component io
the device across tha netwark.
435}

|

Deactivate en old modality companent]
rosponsive to the change In dislogue
statos a5 nacessary

465

Updats the activiy conditions in
shared memary area to rsfiect the
new dislogue state
4o

US 9,201,714 B2
Page 2

(56)

7,401,337
7,409,347
7,409,349
7,409,690
7,711,570
7,882,507
8,095,939
8,352,962
2002/0015064
2002/0178344
2003/0005174
2003/0046346
2003/0093419
2003/0182125
2003/0187944
2004/0117804

References Cited

U.S. PATENT DOCUMENTS

B2 7/2008
Bl 8/2008
B2* 82008
B2 8/2008
B2* 5/2010
B2 2/2011
B2 1/2012
B2 1/2013
Al 2/2002
Al* 11/2002
Al 1/2003
Al 3/2003
Al 5/2003
Al 9/2003
Al 10/2003
Al 6/2004

Bou-Ghannam et al.

Bellegarda

Wangetal.ccoee. 704/270.1
Bou-ghannam et al.

Galanes et al. 704/277
Bou-Ghannam et al.
Bou-Ghannam et al.
Bou-Ghannam et al.

Robotham et al.

Bourguet et al. 712/1
Coffman et al.

Mumick et al.

Bangalore et al.

Phillips et al.

Johnson et al.

Scahill et al.

2007/0250841 Al* 10/2007

2013/0014125 Al
2013/0014129 Al
2013/0014130 Al
2013/0018998 Al

1/2013
1/2013
1/2013
1/2013

Scahill et al. 719/320
Boughannam et al.
Bou-Ghannam et al.
Bou-Ghannam et al.
Boughannam et al.

OTHER PUBLICATIONS

Djenidi et al., “Dynamic Based Agent Reconfiguration of Multime-
dia Multimodal Architecture,” Proceedings of the IEEE Fourth Inter-

national

(MSE’02), 2002, pp. 1-8.
W3C, “Multimodal Interaction Requirements,” Jan. 8, 2003, pp.

1-39.

Symposium on Multimedia Software Engineering

Yang et al., “Smart Sight: A Tourist Assistant System,” 1999.
Amann et al. “Position Statement for Multi-Modal Access,” Nov. 26,

2001, pp. 1-16.

* cited by examiner

US 9,201,714 B2

Sheet 1 of 4

Dec. 1, 2015

U.S. Patent

0G| 19AI9S OIAIDS
Anepoy

-

L

Syl

GGl eleq

Zl | JeAlsg
uoned)ddy

G0l
uoled)ddy

fepowniniy

gL ualD uly L

Sel

[epownini

Gil
s|qejieny

E—

oLl
BAIY

Interface 120]

J..&F 19A19G Jusuodwio) Ajllepoi

U.S. Patent Dec. 1, 2015 Sheet 2 of 4 US 9,201,714 B2

/ Modality Component Server 205 \ 200
Multimodal \

Engine 210
Modality
Activator 220

Interface 225

00
00

Thin Client Modality Component
[230] > [235

\.
\.

FIG. 2

U.S. Patent Dec. 1, 2015 Sheet 3 of 4 US 9,201,714 B2

C1 = {CA, CB! ver CG} CZ = {CB’ CC’ <o CG}

Co = {CAs CB, ceey CH}

C3 = {CB, Cc, . CH}

C4 = {CA, Cc, . CL}

305

Condition Object Action Change State
Ca Application Action_A NO
Cs Modal Comp 1| Action B YES
Ce Modal Comp 1| Action C YES
Cec Modal_Comp_2 | Action_D YES
Co Modal Comp 3 | Action E NO

FIG. 3

U.S. Patent

Dec. 1, 2015

Sheet 4 of 4

400

US 9,201,714 B2

Instantiate an application on a thin
client
408

Monitor the activation conditions
440

!

Connect the application to a modality
manager remotely located from the
application

410

Run the activation conditions based
upon an application event
445

,

Add activation conditions for the
application to a shared memory area
of the modality manager

415

Initiate a programmatic action linked to
the fired activation condition
450

!

Activate at least one modality
component for the dialogue state

Change in dialogue state 7

NO

420

455
YES l

Add activation conditions for the
modality component to the shared
memory area of the modality manager

Activate a new modality component for
the new dialogue state as necessary

425

460

Link each activation condition in the
shared memory area to at least one
programmatic action
430

Deactivate an old modality component
responsive to the change in dialogue
states as necessary

465

'

l

Connect the modality component to
the device across the network
435

Update the activity conditions in
shared memory area to reflect the
new dialogue state
470

FIG. 4

US 9,201,714 B2

1
APPLICATION MODULE FOR MANAGING
INTERACTIONS OF DISTRIBUTED
MODALITY COMPONENTS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of, and accordingly
claims the benefitunder 35 U.S.C. §120 of, U.S. patent appli-
cation Ser. No. 12/163,052, now issued U.S. Pat. No. 7,882,
507, which was filed in the U.S. Patent and Trademark Office
on Jun. 27, 2008, and which is herein incorporated by refer-
ence in its entirety. U.S. patent application Ser. No. 12/163,
052 is a continuation of, and accordingly claims the benefit
under 35 U.S.C. §120 of, U.S. patent application Ser. No.
10/741,997, now issued U.S. Pat. No. 7,409,690, which was
filed in the U.S. Patent and Trademark Office on Dec. 19,
2003, and which is herein incorporated by reference in its
entirety.

BACKGROUND

1. Field of the Invention

The present invention relates to the field of computer soft-
ware and, more particularly, to multimodal applications.

2. Description of the Related Art

A multimodal application is an application that permits
user interactions with more than one input mode. Examples of
input modes include speech, digital pen (handwriting recog-
nition), and the graphical user interface (GUI). A multimodal
application may, for example, accept and process speech
input as well as keyboard or mouse input. Similarly, a multi-
modal application may provide speech output as well as
visual output, which can be displayed upon a screen. Multi-
modal applications can be particularly useful for small com-
puting devices possessing a form-factor that makes keyboard
data entry more difficult than speech data entry. Further,
environmental conditions can cause one interface modality
available in a multimodal application to be preferred over
another. For example, if an environment is noisy, keypad
and/or handwritten input can be preferred to speech input.
Further, when visual conditions of an environment, such as
darkness or excessive glare, make a screen associated with a
computing device difficult to read, speech output can be pre-
ferred to visual output.

Although users of small computing devices can greatly
benefit from multimodal capabilities, small computing
devices can be resource constrained. That is, the memory and
processing power available to a small computing device can
be too limited to support the local execution of more than one
mode of interaction at a time. To overcome resource con-
straints, multimodal processing can be distributed across one
or more remote computing devices. For example, if one mode
of interaction is speech, speech recognition and synthesis
processing for the speech mode can be performed upon a
speech-processing server that is communicatively linked to
the multimodal computing device. Software developers face a
significant challenge in managing distributed multimodal
interactions, some of which can be executed locally upon a
computing device, while other interactions can be executed
remotely.

Conventional solutions to distributed multimodal interac-
tion management have typically been application specific
solutions that have been designed into an application during
the application’s software development cycle. Accordingly,
the features available for each modality, such as speech rec-
ognition features, are typically tightly integrated within the

10

15

20

25

30

35

40

45

50

55

60

65

2

software solution so that future enhancements and additional
features can require extensive software rewrites. Because
hardware and software capabilities are constantly evolving in
the field of information technology, customized solutions can
rapidly become outdated and can be costly to implement. A
more flexible, application-independent solution is needed.

SUMMARY OF THE INVENTION

The present invention provides a method, a system, and an
apparatus for managing a multimodal application using a set
of activation conditions and data placed on a shared memory
area, where a set of activation conditions is defined by an
application developer. More specifically, the application can
be delivered to a thin client that can lack the computing
resources to simultaneously support multiple modalities.
Each input modality supported by the application can be
handled by a modality component. The activation conditions
defined for the application can be used to selectively activate
and deactivate different modality components as needed to
perform input recognition and output synthesis, as well as
interpret data submitted by multiple modality components for
complex multimodal interactions.

In one embodiment, computing resources of the thin client
can be conserved by distributing operations of one or more
modality components across one or more remote servers
communicatively linked to the thin client. A modality com-
ponent server can centrally manage modality components,
regardless of whether the modality components are executing
upon the thin client or are executing upon a remote server. The
modality component server can utilize different application
states published by the multimodal application to detect inter-
action events and to run the activation conditions of the vari-
ous modality components as appropriate.

One aspect of the present invention can include a method
for managing application modalities using a set of author-
defined activation conditions and data. The combination of
activation conditions and data determine the dialogue state of
anapplication. Each of the activation conditions can be linked
to at least one programmatic action, where different program-
matic actions can be executed by different modality compo-
nents. In one embodiment, the programmatic action can be a
modality component action executed remotely from the
application. The role of the application module is to monitor
the activation conditions. An occurrence of one of the activa-
tion conditions can be detected based upon an application
event. At least one programmatic action linked to the occur-
rence can be responsively initiated. In one embodiment, a
modality manager that is remotely located from the applica-
tion can be provided. The application conditions for the dia-
logue state can be asserted, monitored, detected, and initiated
by the application module.

In a particular embodiment, the method can be used to
determine that the application changes from the original dia-
logue state to a new dialogue state. The dialogue state change
can result from the execution of the programmatic action. A
new set of activation conditions are asserted in response to the
new dialogue state. The activation conditions that are moni-
tored and used to initiate programmatic actions can be
updated to reflect the new set of application conditions.

In another embodiment, the modality component can be
activated before the set of activation conditions has been
determined for the dialog state. The activated component can
assert a multitude of activation conditions, and the new set of
activation conditions can update the dialogue state. When the
application changes to a new dialogue state, the previously
activated modality component can be deactivated. This deac-

US 9,201,714 B2

3

tivation can cause the multitude of activation conditions pre-
viously asserted by the deactivated modality component to be
not included in a new set of activation conditions associated
with the new dialogue state. Additionally, the change to the
new dialogue state can result in the activation of a previously
deactivated modality component. The activation conditions
associated with the newly activated modality component can
be included in the new set of activation conditions associated
with the new dialogue state.

In still another embodiment, a set of activation conditions
can be loaded into a centralized memory space. The monitor-
ing for events triggering activation conditions can involve the
centralized memory space. In such an embodiment, when the
application changes from one dialogue state to anew dialogue
state, the centralized memory space can be updated to reflect
the activation conditions of the new dialogue state.

BRIEF DESCRIPTION OF THE DRAWINGS

There are shown in the drawings, embodiments that are
presently preferred; it being understood, however, that the
invention is not limited to the precise arrangements and
instrumentalities shown.

FIG. 1 is a schematic diagram illustrating a system for
handling application modalities using dialog states of the
application in accordance with the inventive arrangements
disclosed herein.

FIG. 2 is a schematic diagram illustrating a system for a
multimodal application that manages distributed modality
components in accordance with the inventive arrangements
disclosed herein.

FIG. 3 is a schematic diagram illustrating a plurality of
dialog states of an application in accordance with the inven-
tive arrangements disclosed herein.

FIG. 4 is flow chart illustrating a method for handling
application modalities using dialog states of the application in
accordance with the inventive arrangements disclosed herein.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 is a schematic diagram illustrating a system 100 for
handling application modalities using dialog states of the
application in accordance with the inventive arrangements
disclosed herein. The system 100 can include a modality
component server 102, a modality service server 150, a thin
client 130, and a multimodal application server 112.

The thin client 130 can be a computing device of limited
capabilities that can rely upon one or more backend servers to
perform at least a portion of its processing tasks. The thin
client 130 can be, for example, a personal data assistant
(PDA), a cellular telephone, an electronic book, an electronic
contact manager, a data tablet, and any other such computing
device. The thin client 130 can lack sufficient resources to
simultaneously enable a set of interface modalities supported
by a multimodal application 105 operating upon the thin
client 130. The thin client 130 can report the input modes that
it supports to a modality component dedicated to the configu-
ration of the device running the application. Information sup-
plied by the thin client 130 can then be submitted to the
modality component server 102. Those modality components
that support the input modes supported by the device can be
dynamically activated and deactivated by the modality com-
ponent server 102 as needed.

Each modality can represent a particular input or output
methodology. For example, graphical user interface (GUI)
based modalities can include, but are not limited to, a key-
board input modality, a mouse selection modality, a screen

20

25

30

40

45

4

touch modality, a visual display modality, and the like.
Speech based modalities can include a speech input modality,
a synthetic speech generation modality, a Dual Tone Multiple
Frequency (DTMF) modality, and the like.

The multimodal application 105 can be a software appli-
cation, which supports interactions via more than one modal-
ity. In one embodiment, the multimodal application 105 can
by a stand-alone, local application residing upon the thin
client 130. In another application, the multimodal application
105 can be a client-side module that interacts with the multi-
modal application server 112. The multimodal application
server 112 can be aremotely located application that manages
a portion of the processing tasks relating to the multimodal
application 105. The multimodal application server 112 will
typically be used in situations where resources directly pro-
vided by the thin client 130 are very limited compared to the
computing resource required for application operations.

The modality component server 102 can manage a plural-
ity of modalities that have been modularly implemented so
that the functions and features for a particular modality can be
contained within a specifically designed modality compo-
nent. When a modality component is activated, the compo-
nent can interact directly with the device for input recognition
and output synthesis. Different modality components used by
the modality component server 102 can be executed to inter-
act with the device from different locations. For example, a
modality component can be locally executed with respect to
the modality component server 102, a modality component or
portions thereof can be remotely executed upon the modality
service server 150, and/or a modality component can be
executed upon the thin client 130. The modality component
server 102 can coordinate actions and events relating to the
multimodal application 105, regardless of where the modality
component is located.

The modality component server 102 can include a set of
active modalities 110 and a set of available modalities 115
that are not presently active. The modality component server
102 can monitor interactive events that are specified within
the active modalities 110 as well as events specified generally
for the multimodal application 105. Further, the modality
component server 102 can initiate appropriate programmatic
actions when a monitored event occurs. One particular
modality component that is typically active is the application
module. The role of the application module is to monitor
activation conditions, where an occurrence of one of the
activation conditions can be detected based upon an applica-
tion event. In one embodiment, the application module can be
provided to the modality component server 102 by the mul-
timodal application server 112. In another embodiment, the
application module can be provided to the modality compo-
nent server 102 by the multimodal application 105.

The modality service server 150 can assign modality pro-
cessing tasks to a modality component from a remote loca-
tion. The modality service server 150 can convey data 155
across a network 145 to the modality component server 102
and/or the multimodal application 105. In one embodiment,
the modality service server 150 can provide a Web service for
a specified modality component. The Web service can be, for
example, a natural language comprehension service, a text-
to-speech service, a language translation service, and the like.

In another embodiment, the modality service server 150
can include a multitude of functions available through remote
procedure call (RPC) routines. It should be appreciated that
the data 155 provided by the modality service server 150 can
be conveyed in any of a variety of manners and the invention
is not to be limited in this regard. For example, message
queuing and advanced program-to-program communications

US 9,201,714 B2

5
(APPC) can be used to convey the data 155 to the multimodal
application 105 and/or the modality component server 102.
The interaction data transferred between the modality com-
ponent and the device can also be encoded into a compression
format.

In one embodiment, the modality component server 102
can include an interface 120 used to standardize data provided
by different modality components and different modality ser-
vice servers so that modality data can be handled in a unified
fashion regardless of the location in which modality opera-
tions are actually executed. The interface 120 can define rules,
data formats, parameters, and the like for complying with the
architecture of the multimodal application 105 and/or the
modality component server 102. Any of a variety of routines,
libraries, data adaptors, networking mechanisms, and the like
can be included within the interface 120 to facilitate the
exchange of data.

For example, in one embodiment, the interface 120 can
include an application program interface (API) defined for
the multimodal application 105 and/or the modality compo-
nent server 102. In another embodiment, the interface 120 can
convert responses received from the modality service server
150 from a format native to the modality service server 150 to
a format compatible with the multimodal application 105. In
yet another embodiment, the interface 120 can include a
plurality of protocol adaptors to establish network communi-
cations with the modality service server 150.

In operation, a multitude of modality components provided
from different locations can register with the modality com-
ponent server 102, thereby becoming available 115 modality
components. One of these modality components can include
an application module provided by the multimodal applica-
tion server 102. When the modality component is registered,
details for the modality component including links for acti-
vating a modality component and firing modality component
routines can be specified. Registered modality components
can include an application module provided by a multimodal
application server 102 and device configuration module pro-
vided by the thin client 130. In one embodiment, the resource
requirements specified within the application module and the
resources available as specified through the device configu-
ration module can be used by the modality component server
102 when selecting which available 115 modality compo-
nents are to become active 110.

After modality components have been registered with the
modality component server 102, the thin client 130 can
instantiate the multimodal application 105. A multitude of
available 115 modality components can become active 110
components for the application instance. An active 110
modality component is one having a multitude of software
objects enabled, where each software object controls one or
more modality tasks. Modality software objects can be placed
in a shared memory area or “white board” of the modality
component server 102. The different software objects within
the shared memory area can be used to coordinate application
interactions between the modality components.

For example, an initial modality component, such as a GUI
modality component, can be activated based upon an initial
dialogue state of the multimodal application 130. When acti-
vated within the modality component server 102, the GUI
modality can be added to the active modalities 110 and events
specified for the GUI modality component can be monitored.
One or more GUI software objects provided by the GUI
modality component can be enabled within the shared
memory area. Data necessary to execute GUI modality func-
tions for the multimodal application 105 can then be enabled

25

30

40

45

6

upon the thin client 130. Enabling these GUI modality func-
tions can involve adding software objects for the application
to the shared memory area.

Input and output data relating to user interactions can be
transferred between the thin client 130 and the modality com-
ponent server 102. Each of these user interactions can be
compared against activation conditions. The activation con-
ditions can result from the various software objects of the
various modality components being placed within the shared
memory area. Activation conditions can by dynamically
adjusted depending on which modality components are active
at any point in time and which software objects have been
enabled within the shared memory area.

For example, a user of the multimodal application 105 can
select a button for enabling speech input. In this example, the
thin client 130 can lack sufficient resource to simultaneously
handle GUI modality operations and speech modality opera-
tions. When the button is selected, data can be conveyed
informing the modality component server 102 of the button
selection event. This event can be one of the monitored events
that trigger a speech modality operation. The modality com-
ponent server 102 can responsively deactivate the GUI
modality component and responsively activate the speech
modality component. Once the speech modality has been
activated, speech input can be received by the speech modal-
ity component via the thin client 130 and appropriate process-
ing performed. The completion of the speech modality tasks
can result in a new dialogue state for the multimodal appli-
cation 105. This new dialogue state can be conveyed to the
modality component server 102, which can deactivate the
speech modality component and activate the GUI modality
component in accordance with the new dialogue state.

FIG. 2 is a schematic diagram illustrating a system 200 for
a multimodal application that manages distributed modality
components in accordance with the inventive arrangements
disclosed herein. The system 200 can include a thin client
230, and at least one modality component 235, and a modality
component server 205. The thin client 230 can possess the
structural characteristics and functions ascribed to the thin
client 130 of FIG. 1. In one embodiment, device specific
information concerning the thin client 230 can be conveyed to
the modality component dedicated to the device’s configura-
tion. This modality component in turn can convey the con-
figuration data to the modality component server 205 so that
suitable device specific parameters can be established and
behavior of the modality component server 205 adjusted in a
device specific manner.

The modality component 235 can be a modular software
unit that handles interactions relating to a particular modality
for a multimodal application executed upon the thin client
230. The modality component 235 can include, but is not
limited to, a speech component, a handwriting component, a
DTMF component, a keypad entry component, a GUI com-
ponent, and the like. Collaborations can exist between differ-
ent modality components 235. For example, a speech com-
ponent can perform a speech recognition task resulting in a
speech input being converted into textual output. The textual
output can be displayed within a GUI text element, which is
displayed using features of a GUI component. An application
module can also be provided, which is also a modality com-
ponent.

In another example, a GUI selection event controlled by a
GUI component can result in the activation of a speech com-
ponent. For example, a GUI button labeled “speech input”
can be displayed within a screen of the modality component
server 205. Selecting the button via a GUI selection action can
toggle the modality component server 205 from a GUI modal-

US 9,201,714 B2

7

ity to a speech modality. The speech modality can be handled
by a speech component that receives a speech input, that
automatically converts the speech to text, and that respon-
sively performs one or more programmatic actions.

Each of the modality components 235 can be registered
with the modality component server 205. Registration can
provide the modality component server 205 with information
necessary to dynamically activate the modality components
235 as needed. The modality component 235 can be local to
the modality component server 205 and/or thin client 230 or
the modality component 235 can be remotely located.

The modality component server 205 can be a software
application, which supports coordinate interactions of a mul-
timodal application running upon a resource restricted thin
client 230. The modality component server 205 can include
an interface 225, a multimodal engine 210, and a modality
activator 220.

In one embodiment, the interface 225 can possess the struc-
tural characteristics and functions ascribed to the interface
120 of FIG. 1. The interface 225 can be used to facilitate the
conveyance of interaction data between the thin client 230
and the modality component server 205 and can facilitate the
conveyance of modal data between the modality component
235 and the thin client 230.

The modality activator 220 can be used to dynamically
activate and/or deactivate the modality components 235 as
appropriate. For example, the modality activator 220 can be
listener within an event/listener pattern that can selectively
activate and deactivate registered modality responsive to pre-
viously defined events. That is, the modality activator can
function as a proxy responsively for managing activation
operations of registered modality components.

The multimodal engine 210 can include an inference
engine 215, a shared memory area 217, a rule data store 219,
and an application engine. The shared memory area 217 can
be a common memory space in which modality objects 250,
252,254, and 256 are dynamically enabled as needed. Each of
the modality objects can represent a software object provided
by a specific modality component 235. Different activation
conditions can be loaded into/removed from the multimodal
engine 210 in accordance with the dialogue state of the appli-
cation as specified by modality objects enabled within the
shared memory area 217. When a modality component 235 is
deactivated, the modality objects associated with the modal-
ity component 235 can be removed from the shared memory
area 217.

When each modality object is placed with the shared
memory area 217, a multitude of rules for that modality object
can be specified in the rule data store 219. The rules can
specify a multitude activation conditions that are to be moni-
tored. Interaction events can trigger the firing of related appli-
cation operations associated with specified activation condi-
tions. The associated application operations can include
operations performed by one or more modality components.
When software objects are removed from the shared memory
area 217, the rules specified for the software object can be
removed from the rule data store 219. During the operation of
the modality component server 205, different modality com-
ponents 235 can be dynamically activated and deactivated,
resulting in different software objects appearing in the shared
memory area 217, which in turn results in different activation
conditions being dynamically monitored by the multimodal
engine 210 in accordance with the rules of the rule data store
219.

The inference engine 215 can list a number of application
conditions that are to be run in response detection of the
application events and rules established within the rules data

20

25

35

40

45

50

55

8

store 219. An application event can be an assertion of new
data, such as an interpretation of user input, by a multimodal-
ity component 235. For example, an application event can be
an on-focus event or amouse-click event resulting from a user
interaction within a particular modality. The application event
can also be a system event. For example, a system event can
be triggered whenever the resources available to the modality
component server 205 fall below a designated threshold.
Such a resource shortage system event can trigger a modality
deactivation action. Additionally, a system event can be a
multimodal application 105 instantiation event, which can
trigger the automatic registration of modality components
235 and the automatic activation of a default set of modalities.
The modality component server 205 can update and modify
the events data contained within inference engine 215 in
accordance with the modality objects contained enabled
within the shared memory area 217.

All active modality components 235 can assert one or more
modality events within the list of the inference engine 215.
Accordingly, the multimodal engine 210 can utilize the infer-
ence engine 215 to look-up events that are to be performed
responsive to a detected interaction event relating to active
modalities in accordance with the rules of the rule data store
219. That is, the multimodal engine 210 can detect the occur-
rence of events specified by active modality components and
the appropriate responses for these events can be specified
within the list of the inference engine 215. The responses
listed in the inference engine 215 can sometimes result in the
activation of a previously deactivated modality component
and the execution of one or more methods provided by the
newly activated modality component.

The application state engine can receive data about the
current dialogue state of an application hosted on the thin
client 230, which drives the interactions and modalities of the
application. For instance, each dialogue state can define the
modality objects that are to be placed in the shared memory
area 217. Accordingly, the rules in the rule data store 219 and
the activation conditions and events specified by the inference
engine 215 can be driven by the dialogue state of the appli-
cation. Consequently, the application state engine can cause
different modality components to be activated and/or deacti-
vated based upon previously established criteria of the appli-
cation dialogue states. In one embodiment, the application
state engine can include an administration interface that per-
mits an authorized administrator to adjust the modalities, the
activation conditions, and the programmatic actions linked to
activation conditions associated with various application dia-
logue states.

FIG. 3 is a schematic diagram 300 illustrating a plurality of
dialog states of an application and a table 305 associating
actions with conditions. The diagram 300 and table 305 can
be utilized in accordance with the inventive arrangements
disclosed herein.

Diagram 300 illustrates five different application dialogue
states, S, S, S,,S;,and S,,. In one embodiment, the modality
component server 205 of FIG. 2 can manage the changes
depicted in diagram 300. A dialogue state can be an applica-
tion state resulting from predetermined user interactions. Dif-
ferent user selectable options can be presented in each appli-
cation dialogue state. Selection of each of these options can
result in one or more programmatic actions being initiated.
The execution of different programmatic actions can result in
a change in the dialogue state of the application. Only certain
dialogue states can be reached from other dialogue states
depending on the changes that occur within a dialogue state.
In diagram 300, S, can transition to S;; S, can loop within S,

US 9,201,714 B2

9

orcantransitionto S,; S, can transition to S;; S; can transition
to S,; and, S, can loop within S, or can transition to S,.

Each dialogue state has an associated condition set detail-
ing activation conditions for the corresponding state. The
conditions sets for S, S|, S5, S;,and S, are C,, C,, C,, Cy, and
C,, respectively. Each condition set can consist of a plurality
of conditions. The conditions of the condition set can be
loaded into a shared memory area of a modality manager,
whenever the application is in the related dialogue state. In
diagram 300, condition set C, can include the activation con-
ditions of C ;, Cz, C, Cp, Cg, Cp, Cg, and C,. Additionally,
C, can include C,, Cz, C., Cp, Cg, Cp, and Cg; C, can
include Cg, C, Cp, Cr, Cp, and C; C; can include Cg, C,
Cp, Cr, Cr, Cs, and Cpyand Cpyy and, C, can include C, Co,
Cp, Cr, Cr, Cis, Cpyy, Cp, C, Cr and G

In one embodiment, the table 305 can be used to initiate
programmatic actions when an activation condition is
detected. The initiated actions can be initiated within the
application as well as within a multitude of modality compo-
nents which may be remotely located. Further, the table 305
can indicate whether the completion of a particular action can
result in a dialogue state change.

According to table 305, when condition C, is detected,
Action_A can be initiated with the multimodal application.
No dialogue state change can result from the execution of
Action_A. Condition Cy can initiate an Action_B within a
Modal_Component_1, which does result in a dialogue state
change. C_ can initiate two programmatic actions, one from
within Modal_Component_1 and the other from within
Modal_Component 2. C,, can initiate remotely located
Modal_Component_3 to perform a programmatic action des-
ignated Action_E. It should be appreciated by one of ordinary
skill in the art that FIG. 3 is for illustrative purposes only and
that the invention is not to be limited to the particular imple-
mentation details presented therein.

FIG. 4 is flow chart illustrating a method 400 for handling
application modalities using dialog states of the application in
accordance with the inventive arrangements disclosed herein.
The method 400 can be performed in the context of a multi-
modal application that handles modalities in a modular fash-
ion using multiple modality components. Modality interac-
tion with a device can be performed by the modality
components that can be distributed across a network. Addi-
tionally, the multimodal application can be disposed within a
thin client that has limited resource capabilities. Different
modality components can be dynamically activated and deac-
tivated as needed.

The method can begin in step 405, where an application
can be instantiated on a thin client. In step 410, the application
can be communicatively connected to a modality manager
remotely located from the application. The modality manager
can function as a centralized location that coordinates appli-
cation events and modal actions of different modality com-
ponents. In one embodiment, the modality manager can func-
tion as a modality component server and the multimodal
client can function as a modality component client. In step
415, activation conditions related to the application can be
added to a shared memory area of the modality manager. This
shared memory area can be a centralized location used to
coordinate the interactions of the application.

In step 420, at least one modality component can be acti-
vated for the dialogue state. In step 425, activation conditions
specified for the newly activated modality component can be
added to the shared memory area of the modality manager. In
step 430, each activation condition in the shared memory area
can be linked to at least one programmatic action. For
example, a lookup table can list the programmatic actions that

15

25

35

40

45

55

60

10

are to be triggered upon the detection of each activation
condition. In step 435, the modality component can be con-
nected directly to the device. In step 440, the activation con-
ditions contained in the shared memory area can be moni-
tored by the modality manager.

In step 445, the activation conditions can be run in response
to an application event, such as a button selection event and/or
a keyboard entry. In step 450, a programmatic action can be
initiated based upon a fired activation condition. The pro-
grammatic action can be executed by a software routine local
to the thin client or can be performed by one or more remotely
located software routines. Remotely located software rou-
tines can include Web services and RPC routines.

In step 455 a determination can be made as to whether the
dialogue state has changed or not. It should be appreciated
that the dialogue state of the application can change respon-
sive to the execution of the programmatic action. A new
dialog state can occur if the set of activation conditions has
been updated. If no state change has occurred, the method can
loop back to step 440, where the modality manager can con-
tinue to monitor for activation conditions. If a state change is
determined in step 455, the modality manager and included
memory space can be updated to reflect the new dialogue
state. It should be appreciated that each dialogue state can
have a particular set of modality components that are active as
well as a particular set of application specific activation con-
ditions.

Specifically, in step 460, one or more new modality com-
ponents can be activated for the new dialogue state, as nec-
essary. In step 465, one or more old modality components that
are not needed according to the new dialogue state can be
deactivated. In step 470, the activity conditions in the shared
memory area can be updated so that the modality manager can
proper monitor the activity conditions relating to the pres-
ently active modality components. After the shared memory
area has been updated to reflect the new dialogue state, the
method can continue to step 435, where appropriate program-
matic actions can be linked to the activation conditions.

The present invention can be realized in hardware, soft-
ware, or acombination of hardware and software. The present
invention can be realized in a centralized fashion in one
computer system or in a distributed fashion where different
elements are spread across several interconnected computer
systems. Any kind of computer system or other apparatus
adapted for carrying out the methods described herein is
suited. A typical combination of hardware and software can
be a general-purpose computer system with a computer pro-
gram that, when being loaded and executed, controls the
computer system such that it carries out the methods
described herein.

The present invention also can be embedded in a computer
program product, which comprises all the features enabling
the implementation of the methods described herein, and
which when loaded in a computer system is able to carry out
these methods. Computer program in the present context
means any expression, in any language, code or notation, of a
set of instructions intended to cause a system having an infor-
mation processing capability to perform a particular function
either directly or after either or both of the following: a)
conversion to another language, code or notation; b) repro-
duction in a different material form.

This invention can be embodied in other forms without
departing from the spirit or essential attributes thereof.
Accordingly, reference should be made to the following
claims, rather than to the foregoing specification, as indicat-
ing the scope of the invention.

US 9,201,714 B2

11

The invention claimed is:

1. A method of managing a multimodal application execut-
ing at least in part on a client device, the client device com-
municating with at least one server device, the client device
being configured to accept input from a user via a plurality of
modalities, the method comprising:

detecting, with at least one control module, that input from

auser via one or more modalities has been interpreted by
at least one first software module;
in response to interpretation of the input, activating, with
the at least one control module, at least one second
software module to process further input from the user,
the at least one second software module being config-
ured to, when executed by at least one processor of the at
least one server device, cause the at least one processor
to perform a task for processing the further input from
the user, the task resulting in a change of a dialog state of
the multimodal application from a first dialog state to a
second dialog state; and
receiving a notification at the at least one control module,
output by the at least one second software module fol-
lowing performance of the task, that the dialog state of
the multimodal application is to change from the first
dialog state to the second dialog state, the notification
received by the control module identifying the second
dialog state to which the dialog state of the multimodal
application is to change.
2. The method of claim 1, further comprising:
registering the at least one second software module with
the at least one control module, the registering compris-
ing identifying at least one condition on which the at
least one second software module is to be activated; and

in response to detecting that the input from the user has
been interpreted, determining, with the at least one con-
trol module, whether the interpretation of the input by
the at least one first software module meets the at least
one condition on which the at least one second software
module is to be activated,

wherein the activating the at least one second software

module comprises activating the at least one second
software module in response to determining that the
interpretation of the input meets the at least one condi-
tion.

3. The method of claim 1, further comprising:

receiving the further input from the user via one or more of

the plurality of modalities; and

with the at least one control module, triggering execution

of'the at least one second software module to cause the at
least one processor to perform the task for processing the
further input, wherein triggering the execution com-
prises providing the further input to the at least one
second software module.

4. The method of claim 3, further comprising:

monitoring, with the at least one control module, for a

notification from the at least one second software mod-
ule that the further input from the user has been inter-
preted by the at least one second software module; and
in response to the dialog state of the multimodal applica-
tion changing to the second dialog state as a result of the
performance of the task, activating, with the at least one
control module, at least one third software module to
process third input from the user, the at least one third
software module being configured to, when executed by
the at least one processor, cause the at least one proces-
sor to perform a second task for processing the third
input from the user, the second task resulting in a change

10

15

20

25

30

35

40

45

50

55

60

65

12

of a dialog state of the multimodal application from the
second dialog state to a third dialog state.

5. The method of claim 4, further comprising:

in response to the dialog state of the multimodal applica-

tion changing to the third dialog state, deactivating, with
the at least one control module, the at least one second
software module.

6. The method of claim 4, further comprising:

monitoring, with the at least one control module, for a

notification of occurrence of at least one of a set of
events, each event in the set of the events being associ-
ated with a programmatic action to be performed on
occurrence of the event; and

wherein the activating the at least one second software

module comprises adding at least one event to the set of
events, the at least one event comprising an interpreta-
tion of the further input from the user and a change of a
dialog state of the multimodal application from the first
dialog state to a second dialog state, the programmatic
action associated with the interpretation of the input
being activation of the at least one third software mod-
ule.

7. The method of claim 1, wherein the activating the at least
one second software module comprises instantiating the at
least one second software module.

8. The method of claim 1, wherein the activating the at least
one software module comprises activating a server-side mod-
ule on the at least one server device and activating a client-
side module on the client device, the server-side module
being configured to communicate with the client-side module
to receive the further input from the user and to perform the
task.

9. At least one non-transitory computer-readable storage
medium having encoded thereon computer-executable
instructions that, when executed by at least one processor,
cause the at least one processor to carry out a method of
managing a multimodal application executing at least in part
on a client device, the client device communicating with at
least one server device, the client device being configured to
accept input from a user via a plurality of modalities, the
method comprising:

detecting, with at least one control module, that input from

auser via one or more modalities has been interpreted by
at least one first software module;

in response to interpretation of the input, activating, with

the at least one control module, at least one second
software module to process further input from the user,
the at least one second software module being config-
ured to, when executed by at least one processor of the at
least one server device, cause the at least one processor
to perform a task for processing the further input from
the user, the task resulting in a change of a dialog state of
the multimodal application from a first dialog state to a
second dialog state; and

receiving a notification at the at least one control module,

output by the at least one second software module fol-
lowing performance of the task, that the dialog state of
the multimodal application is to change from the first
dialog state to the second dialog state, the notification
received by the control module identifying the second
dialog state to which the dialog state is to change.

10. The at least one computer-readable storage medium of
claim 9, wherein the method further comprises:

registering the at least one second software module, the

registering comprising identifying at least one condition
on which the at least one second software module is to be
activated; and

US 9,201,714 B2

13

in response to detecting that the input from the user has
been interpreted, determining whether the interpretation
of the input by the at least one first software module
meets the at least one condition on which the at least one
second software module is to be activated,
wherein the activating the at least one second software
module comprises activating the at least one second
software module in response to determining that the
interpretation of the input meets the at least one condi-
tion.
11. The at least one computer-readable storage medium of
claim 9, wherein the method further comprises:
receiving the further input from the user via one or more of
the plurality of modalities; and
triggering execution of the at least one second software
module to cause the at least one processor to perform the
task for processing the further input, wherein triggering
the execution comprises providing the further input to
the at least one second software module.
12. The at least one computer-readable storage medium of
claim 9, wherein the method further comprises:
monitoring for a notification from the at least one second
software module that the further input from the user has
been interpreted by the at least one second software
module; and
in response to the dialog state of the multimodal applica-
tion changing to the second dialog state as a result of the
performance of the task, activating at least one third
software module to process third input from the user, the
at least one third software module being configured to,
when executed by the at least one processor, cause the at
least one processor to perform a second task for process-
ing the third input from the user, the second task result-
ing in a change of a dialog state of the multimodal
application from the second dialog state to a third dialog
state.
13. The at least one computer-readable storage medium of
claim 12, wherein the method further comprises:
in response to the dialog state of the multimodal applica-
tion changing to the third dialog state, deactivating the at
least one second software module.
14. An apparatus comprising:
at least one processor; and
at least one storage medium having encoded thereon
executable instructions that, when executed by the at
least one processor, cause the at least one processor to
carry out a method of managing a multimodal applica-
tion executing at least in part on the client device, the
client device communicating with at least one server
device, the client device being configured to accept input
from a user via a plurality of modalities, the method
comprising:
detecting, with at least one control module, that input
from a user via one or more modalities has been
interpreted by at least one first software module;
in response to interpretation of the input, activating, with
the at least one control module, at least one second
software module to process further input from the
user, the at least one second software module being
configured to, when executed by at least one proces-
sor of the at least one server device, cause the at least
one processor to perform a task for processing the

10

15

20

30

40

45

55

60

14

further input from the user, the task resulting in a
change of a dialog state of the multimodal application
from a first dialog state to a second dialog state; and
receiving a notification at the at least one control mod-
ule, output by the at least one second software module
following performance of the task, that the dialog
state of the multimodal application is to change from
the first dialog state to the second dialog state, the
notification received by the control module identify-
ing the second dialog state to which the dialog state is
to change.
15. The apparatus of claim 14, wherein the method further
comprises:
registering the at least one second software module, the
registering comprising identifying at least one condition
on which the at least one second software module is to be
activated; and
in response to detecting that the input from the user has
been interpreted, determining whether the interpretation
of the input by the at least one first software module
meets the at least one condition on which the at least one
second software module is to be activated,
wherein the activating the at least one second software
module comprises activating the at least one second
software module in response to determining that the
interpretation of the input meets the at least one condi-
tion.
16. The apparatus of claim 14, wherein the method further
comprises:
receiving the further input from the user via one or more of
the plurality of modalities; and
triggering execution of the at least one second software
module to cause the at least one processor to perform the
task for processing the further input, wherein triggering
the execution comprises providing the further input to
the at least one second software module.
17. The apparatus of claim 14, wherein the method further
comprises:
monitoring for a notification from the at least one second
software module that the further input from the user has
been interpreted by the at least one second software
module; and
in response to the dialog state of the multimodal applica-
tion changing to the second dialog state as a result of the
performance of the task, activating at least one third
software module to process third input from the user, the
at least one third software module being configured to,
when executed by the at least one processor, cause the at
least one processor to perform a second task for process-
ing the third input from the user, the second task result-
ing in a change of a dialog state of the multimodal
application from the second dialog state to a third dialog
state.
18. The apparatus of claim 17, wherein the method further
comprises:
in response to the dialog state of the multimodal applica-
tion changing to the third dialog state, deactivating the at
least one second software module.
19. The apparatus of claim 14, wherein the apparatus is the
at least one server device and the at least one processor is the
at least one processor of the server device.

#* #* #* #* #*

